
Abstract- This paper describes a comparative investigation
into the impact penetration characteristics of DNA-coated
gold micro-particles into human and porcine skin.  This
work is aimed at establishing the link between the particle
parameters required in delivering particles to the
epidermis of pigs and humans.  The particles are
delivered to the skin using the PowderJect concept: a
method that accelerates vaccines and drugs in micro-
particle form to velocities sufficient to penetrate the skin
and achieve a therapeutic effect.  Devices are configured
to deliver particles to predetermined velocities to both the
in-vivo inguinal region of the pig and the ex-vivo skin from
the human back and arm.  Location of the gold particles
within the tissue sites was assayed in histological sections
taken from the tissue sites.  The penetration results in pig
and human tissue are analyzed and compared with
calculations performed with a semi-empirical unified
penetration model.

Keywords- Biolistics, Skin Penetration, Particles, Stratum
Corneum, PowderJect, Powder Injection.

I. INTRODUCTION

At the University of Oxford and PowderJect Pharmaceuticals
PLC, a unique form of needle-free transdermal vaccine and
drug delivery technology has been developed.  The principle
behind this concept is to accelerate vaccines and drugs in
micro-particle form to a velocity sufficient for them to
penetrate the skin or mucosa to achieve a therapeutic effect
[1].  

In recent years, a component of research has been directed
towards producing systems configured to deliver particles to
the required layers within the epidermis [2]-[6].  The particle
density, size and impact velocity requirements for the desired
penetration characteristics have been explored by the delivery
of model particles to excised human skin [7]-[8] and mucosal
tissue [9].  In order to explore the therapeutic capabilities of
the PowderJect concept prior to clinical trials in man,
however, animal models such as the pig, rat and dog are
regularly employed [10].  

One application of particular interest is genetic vaccination,
achieved by the delivery of DNA coated gold particles to
dendritic cells within the epidermis of the skin.  The pig
animal model is used to provide essential immunology
information for PowderJect configurations.  In order to

optimise physical impact conditions for such animal work, a
firm understanding of the particle impact parameters in pigs
is required.  Furthermore, in negotiating the step from animal
testing to clinical trials in man, the link in impact conditions
for both cases needs to be more fully understood.

In this paper the penetration characteristics of DNA-coated
gold particles into pig and human skin are compared.
Controlled delivery devices were used to accelerate gold
particles to both the in-vivo inguinal region of the pig and the
ex-vivo skin from the human back.  The inguinal region is
most favored for delivery due to the thinness of the stratum
corneum, the principal barrier to penetration, and the
proximity of the draining lymph nodes. The penetration of the
gold particles was then assayed in histological sections taken
from the injection sites, with both particle diameter and
penetration depth from the surface measured across the site.
This data was then analyzed and compared to calculations
from a unified penetration model.

II. METHODOLOGY

A. Particles and Delivery Devices
In order to investigate the delivery of small, high-density

particles into the skin, devices that deliver particles with
controllable and incremental velocities are required.  The
systems employed in this study are variants of the Contoured
Shock Tube (CST) [5], [6] and [8].  Three CST device
configurations were used to provide a distinct range in
particle impact velocities of between 420 m/s and 640 m/s.

The radius of gold micro-particles used in this study were
0.89 ± 0.58 µm, 1.12 ± 0.56 µm and 1.52 ± 0.58 µm (mean ±
SD) with an average density of 16.8 g/cm3.  Payloads were
within the range of 0.5-1.5 mg. 

B. Excised Human Skin Preparation
Excised human skin was used as a target for these

experiments.  Skin was harvested by dermatome from the
back and arm of two cadavers (Caucasian, aged 70 and 72
years, and male).  After excision, the skin was washed in
sterile saline at room temperature.  Residual liquid was
allowed to drain off the skin before it was placed in
Dulbecci’s Modified Eagle’s Medium (DMEM) at 4ºC for a
minimum of 2 hours.  It was then removed, packed and sealed
into plastic envelopes before being frozen at 1ºC/min until -
80ºC as which temperature it was stored.  Upon thawing the
skin was washed, then re-hydrated and reheated to
physiologic conditions.  Particles were injected with the skin
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resting on an absorbent dressing.  After injection the tissue
was snap frozen and embedded in tissue freezing media.  It
was then sectioned in a cryotome to a thickness of 12 µm.
Sections were stained in Haematoxylin (0.5% Gills No II),
and Eosin (1% w/v), mounted in an aqueous mountant,
coverslipped and observed under an optical microscope.
Aqueous mountant was used in order to observe the gold
particles residing in the stratum corneum.  Microphotographs
were taken using digital camera (Leica DC100), and used for
the subsequent analysis.

C. Porcine Skin Handling 
The inguinal region of the pig was washed and shaved for

the in-vivo experiments. After injection and euthanising the
pig, the target tissue was excised and placed in 10% formalin
for fixing. The tissue samples were then trimmed of fat and
further fixing was carried out using a Shandon Citadel 1000
Tissue Processor. The tissue processor runs on a twelve hour
cycle during which time the skin specimens undergo twelve
chemical treatments starting with 10% neutral buffered
formalin (NBF) and six rinses in ethanol. The skin was then
processed through xylene and melted paraffin wax before
ultimately being mounted in paraffin wax for sectioning.
Microtome sections of a nominal thickness of 4 µm were
taken across the centerline of the injection site and stained
using Haematoxylin and Eosin, as per human skin. The
methods employed to observe the particles were identical to
that for the human skin samples.

III. RESULTS AND DISCUSSION

A. Sample Histology Sections
Fig. 1 (below) shows a typical image of a histological

section of porcine and human skin after particle impact.

Fig. 1. Sample images of particle penetration into porcine (a) and human (b)
tissue.  Compartments of the skin are marked.  The bar corresponds to a scale

of 20 µm

From such images, particle radius and depth
measurements were taken.  The stratum corneum, viable
epidermis and dermis of the skin section are labeled.  For the
porcine sample, the gold particles with a mean radius of 1.2 ±
0.2 µm impacted at a nominal velocity of 640 ± 50 m/s (mean

± SD).  For the human skin sample, particles with a mean
radius of 1 µm ± 0.2 µm impacted the skin with a mean
calculated velocity of 580 ± 50 m/s (mean ± SD).

B.  Raw Penetration Data
Over 3000 penetration measurements for impact into

human and porcine skin were recorded.  The data is shown
below in Fig. 2, where the penetration depth of each particle
is ranked against ρvr (the product of the particle density,
impact velocity and radius).  This term could be described as
an indication of the impact momentum per cross-sectional
area of the particle.

The raw data has also been equally grouped together
according to the parameter ρvr for each of the skin types.
Error bars are shown to illustrate the standard deviation for
each collapsed data point.  Here, porcine skin appears to be

more resistant to the ballistic delivery of micro-particles than
human skin.

Fig. 2. Raw and collapsed penetration data into human and porcine skin.
Penetration depth is ranked according to the term ρvr.

C. Comparison of Data with Models.
A theoretical analysis has been applied to the

experimental data to further the understanding of the micro-
particle penetration mechanisms.  Such modeling helps
provide insights into differences between porcine and human
skin penetration.  The favored model [11], describes the drag
force D, acting on the particle as a function of particle and
target material properties:
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to yield the target material.  Equation (1) may be integrated to
yield theoretical penetration depths for given impact
parameters, as shown by (2).
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where ρp is the density, rp is the radius and vi is the impact
velocity of the particle.  There is a dearth of data pertaining to
the important mechanical properties of skin in the literature.
This is particularly the case for the high strain rate (order 105

/s) conditions of ballistic penetration.  For instance, a study
investigating the yield stress of the stratum corneum under
static loading [12] obtained measurements between 4.9 MPa
and 22 MPa for relative humidity values of between 100%
and 0% respectively.  These values do not take into account
the high strain rates that occur during particle impact.
Significantly higher empirical values were chosen for the
yield stress of human (45 MPa) and porcine skin (110 MPa).

The grouped penetration data are compared with
calculations with the model for human and porcine skin
samples in Fig. 4 and Fig. 5 respectively.

Fig. 4. Comparison between the grouped experimental data and theoretical
model for human skin

Fig. 5. Comparison between the grouped experimental data and theoretical
model for porcine skin

In order to visualize the comparison of penetration depth
as a function of three independent impact parameters ρvr (the
density, radius and impact velocity of the particle), the data
has been grouped into three bands of the product of the radius
and density of the particle (ρp rp).  The non-linear variation of
particle penetration with velocity has been illustrated for each
group of ρp rp.  

Comparison of the experimental data in Fig. 4 and Fig. 5
suggests that the porcine skin is more resistant to penetration
than human skin.  This is supported by the difference in yield
stress values (45 MPa for human and 110 MPa for porcine
skin) chosen fit the theoretical models to both sets of
experimental data.  Despite the large error bars associated
with the grouped data, the theoretical model appears to fit the
data well, with the variations in impact parameters closely
matched by the model.  Although the authors have not
identified in the literature any specific studies comparing the
relative strengths of porcine and human skin, some general
observations have been made.  It is reported that the pig has a
thicker and much more compact stratum corneum than that of
human [13].

As the stratum corneum appears to constitute the major
barrier to particle penetration, any differences in its strength
or thickness will have a great effect on the ballistic delivery
of micro-particles.  It is believed that this higher relative
strength of porcine stratum corneum accounts for the
significant difference between the penetration into the two
tissues.

In contrast with the literature [13], no significant
difference in the thickness of the two animal species was
found in this study.  For the two human samples used the
thickness were 8.2 ± 1.6 µm and 13.2 ± 1.9 µm (mean ± SD).
The porcine stratum corneum was measured to have a
thickness of 9.3 ± 1.7 µm.  Therefore, it appears that for the
tissue samples of the study, stratum corneum thickness
variation is not the source of the differences in particle
penetration depth between human and porcine skin.

It is unclear to what extent treatments to human skin prior
to injection may alter key mechanical properties of the tissue.
Previous studies [7] suggest that providing the skin is re-
hydrated to physiological conditions then the biomechanical
properties are not significantly altered.  However, such
assertions have not been tested in controlled comparative
studies and different levels of hydration may be a source of
the discrepancy in absolute penetration depths between
human and porcine skin.

IV. CONCLUSION

The mechanical characteristics of the particle penetration
into both human (back and arm) and porcine skin (inguinal
region) have been investigated and compared.  Contoured
Shock Tube (CST) prototype devices were used as systems to
deliver DNA coated Gold particles to the skin with controlled
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impact conditions.  Particle penetration depth was measured
from histological sections of the skin using image analysis.

It was found that the penetration depth of gold particles in
both the human and porcine skin was a strong function of the
particle density, impact velocity and radius.  Furthermore, it
was established that for the samples used in this study, the
porcine skin represented a greater barrier to particle
penetration than the human skin.  This finding was supported
by a discrepancy between the yield stress values (45 MPa and
110 MPa for human and pig skin respectively) chosen to fit
calculations with a Unified Penetration Model to the
experimental data.  Nevertheless, the result was obtained in
human and porcine samples with similar stratum corneum
thicknesses.  One of the sources of the differences achieved in
penetration depth may be in the preparation methods of the
porcine and human skin samples.  Future work will be
directed in exploring these effects and providing a more
comprehensive database to enable:
• Carefully configured studies with pig animal models

targeted to a particular layer within the skin, and;
• An optimal transfer of operating conditions from animal

model work to clinical trials in man.
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